1,046 research outputs found

    African debt crisis

    Get PDF

    Multitarget Sputtering Using Decoupled Plasma

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryJoint Services Electronics Program / DAAB-07-72-C-025

    Impulse Stimulated Crystallization in Amorphous Semiconducting Films

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryJoint Services Electronics Program / DAAB-07-72-C-025

    Variable Hard-X-Ray Emission from the Candidate Accreting Black Hole in Dwarf Galaxy Henize 2-10

    Get PDF
    We present an analysis of the X-ray spectrum and long-term variability of the nearby dwarf starburst galaxy Henize 2–10. Recent observations suggest that this galaxy hosts an actively accreting black hole (BH) with mass ~106 M⊙{{M}_{\odot }}. The presence of an active galactic nucleus (AGN) in a low-mass starburst galaxy marks a new environment for AGNs, with implications for the processes by which "seed" BHs may form in the early universe. In this paper, we analyze four epochs of X-ray observations of Henize 2–10, to characterize the long-term behavior of its hard nuclear emission. We analyze observations with Chandra from 2001 and XMM-Newton from 2004 and 2011, as well as an earlier, less sensitive observation with ASCA from 1997. Based on a detailed analysis of the source and background, we find that the hard (2–10 keV) flux of the putative AGN has decreased by approximately an order of magnitude between the 2001 Chandra observation and exposures with XMM-Newton in 2004 and 2011. The observed variability confirms that the emission is due to a single source. It is unlikely that the variable flux is due to a supernova or ultraluminous X-ray source, based on the observed long-term behavior of the X-ray and radio emission, while the observed X-ray variability is consistent with the behavior of well-studied AGNs

    Low-Energy Electron Microscopy Studies of Interlayer Mass Transport Kinetics on TiN(111)

    Full text link
    In situ low-energy electron microscopy was used to study interlayer mass transport kinetics during annealing of three-dimensional (3D) TiN(111) mounds, consisting of stacked 2D islands, at temperatures T between 1550 and 1700 K. At each T, the islands decay at a constant rate, irrespective of their initial position in the mounds, indicating that mass is not conserved locally. From temperature-dependent island decay rates, we obtain an activation energy of 2.8+/-0.3 eV. This is consistent with the detachment-limited decay of 2D TiN islands on atomically-flat TiN(111) terraces [Phys. Rev. Lett. 89 (2002) 176102], but significantly smaller than the value, 4.5+/-0.2 eV, obtained for bulk-diffusion-limited spiral step growth [Nature 429, 49 (2004)]. We model the process based upon step flow, while accounting for step-step interactions, step permeability, and bulk mass transport. The results show that TiN(111) steps are highly permeable and exhibit strong repulsive temperature-dependent step-step interactions that vary between 0.003 and 0.076 eV-nm. The rate-limiting process controlling TiN(111) mound decay is surface, rather than bulk, diffusion in the detachment-limited regime.Comment: 26 pages, 5 figure

    Galaxy-scale Bars in Late-type Sloan Digital Sky Survey Galaxies Do Not Influence the Average Accretion Rates of Supermassive Black Holes

    Get PDF
    Galaxy-scale bars are expected to provide an effective means for driving material toward the central region in spiral galaxies, and possibly feeding supermassive black holes (BHs). Here we present a statistically complete study of the effect of bars on average BH accretion. From a well-selected sample of 50,794 spiral galaxies (with {M}_{* }\sim 0.2\mbox{--}30\times {10}^{10}\,{M}_{\odot }) extracted from the Sloan Digital Sky Survey Galaxy Zoo 2 project, we separate those sources considered to contain galaxy-scale bars from those that do not. Using archival data taken by the Chandra X-ray Observatory, we identify X-ray luminous (LX≳1041 erg s−1{L}_{{\rm{X}}}\gtrsim {10}^{41}\,\mathrm{erg}\,{{\rm{s}}}^{-1}) active galactic nuclei and perform an X-ray stacking analysis on the remaining X-ray undetected sources. Through X-ray stacking, we derive a time-averaged look at accretion for galaxies at fixed stellar mass and star-formation rate, finding that the average nuclear accretion rates of galaxies with bar structures are fully consistent with those lacking bars (M˙acc≈3×10−5{\dot{M}}_{\mathrm{acc}}\approx 3\times {10}^{-5} M⊙{M}_{\odot } yr−1). Hence, we robustly conclude that large-scale bars have little or no effect on the average growth of BHs in nearby (z<0.15z\lt 0.15) galaxies over gigayear timescales

    Finding Faint Intermediate-mass Black Holes in the Radio Band

    Full text link
    We discuss the prospects for detecting faint intermediate-mass black holes, such as those predicted to exist in the cores of globular clusters and dwarf spheroidal galaxies. We briefly summarize the difficulties of stellar dynamical searches, then show that recently discovered relations between black hole mass, X-ray luminosity and radio luminosity imply that in most cases, these black holes should be more easily detected in the radio than in the X-rays. Finally, we show upper limits from some radio observations of globular clusters, and discuss the possibility that the radio source in the core of the Ursa Minor dwarf spheroidal galaxy might be a ∼10,000−100,000M⊙\sim 10,000-100,000 M_\odot black hole.Comment: 10 pages, no figures, to appear in From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales, ed. T. J. Maccarone, R. P. Fender, and L. C. Ho (Dordrecht: Kluwer

    Extrapolating SMBH correlations down the mass scale: the case for IMBHs in globular clusters

    Full text link
    Empirical evidence for both stellar mass black holes M_bh<10^2 M_sun) and supermassive black holes (SMBHs, M_bh>10^5 M_sun) is well established. Moreover, every galaxy with a bulge appears to host a SMBH, whose mass is correlated with the bulge mass, and even more strongly with the central stellar velocity dispersion sigma_c, the `M-sigma' relation. On the other hand, evidence for "intermediate-mass" black holes (IMBHs, with masses in the range 1^2 - 10^5 M_sun) is relatively sparse, with only a few mass measurements reported in globular clusters (GCs), dwarf galaxies and low-mass AGNs. We explore the question of whether globular clusters extend the M-sigma relationship for galaxies to lower black hole masses and find that available data for globular clusters are consistent with the extrapolation of this relationship. We use this extrapolated M-sigma relationship to predict the putative black hole masses of those globular clusters where existence of central IMBH was proposed. We discuss how globular clusters can be used as a constraint on theories making specific predictions for the low-mass end of the M-sigma relation.Comment: 14 pages, 3 figures, accepted for publication in Astrophysics and Space Science; fixed typos and a quote in Sec.

    Constraints on the Local Sources of Ultra High-Energy Cosmic Rays

    Full text link
    Ultra high-energy cosmic rays (UHECRs) are believed to be protons accelerated in magnetized plasma outflows of extra-Galactic sources. The acceleration of protons to ~10^{20} eV requires a source power L>10^{47} erg/s. The absence of steady sources of sufficient power within the GZK horizon of 100 Mpc, implies that UHECR sources are transient. We show that UHECR "flares" should be accompanied by strong X-ray and gamma-ray emission, and that X-ray and gamma-ray surveys constrain flares which last less than a decade to satisfy at least one of the following conditions: (i) L>10^{50} erg/s; (ii) the power carried by accelerated electrons is lower by a factor >10^2 than the power carried by magnetic fields or by >10^3 than the power in accelerated protons; or (iii) the sources exist only at low redshifts, z<<1. The implausibility of requirements (ii) and (iii) argue in favor of transient sources with L>10^{50} erg/s.Comment: 7 pages, 1 figure, submitted to JCA

    The Centurion 18 telescope of the Wise Observatory

    Full text link
    We describe the second telescope of the Wise Observatory, a 0.46-m Centurion 18 (C18) installed in 2005, which enhances significantly the observing possibilities. The telescope operates from a small dome and is equipped with a large-format CCD camera. In the last two years this telescope was intensively used in a variety of monitoring projects. The operation of the C18 is now automatic, requiring only start-up at the beginning of a night and close-down at dawn. The observations are mostly performed remotely from the Tel Aviv campus or even from the observer's home. The entire facility was erected for a component cost of about 70k$ and a labor investment of a total of one man-year. We describe three types of projects undertaken with this new facility: the measurement of asteroid light variability with the purpose of determining physical parameters and binarity, the following-up of transiting extrasolar planets, and the study of AGN variability. The successful implementation of the C18 demonstrates the viability of small telescopes in an age of huge light-collectors, provided the operation of such facilities is very efficient.Comment: 16 pages, 13 figures, some figures quality was degraded, accepted for publication in Astrophysics and Space Scienc
    • …
    corecore